Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; 16(4): e20401, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37903749

RESUMO

Discovery and analysis of genetic variants underlying agriculturally important traits are key to molecular breeding of crops. Reduced representation approaches have provided cost-efficient genotyping using next-generation sequencing. However, accurate genotype calling from next-generation sequencing data is challenging, particularly in polyploid species due to their genome complexity. Recently developed Bayesian statistical methods implemented in available software packages, polyRAD, EBG, and updog, incorporate error rates and population parameters to accurately estimate allelic dosage across any ploidy. We used empirical and simulated data to evaluate the three Bayesian algorithms and demonstrated their impact on the power of genome-wide association study (GWAS) analysis and the accuracy of genomic prediction. We further incorporated uncertainty in allelic dosage estimation by testing continuous genotype calls and comparing their performance to discrete genotypes in GWAS and genomic prediction. We tested the genotype-calling methods using data from two autotetraploid species, Miscanthus sacchariflorus and Vaccinium corymbosum, and performed GWAS and genomic prediction. In the empirical study, the tested Bayesian genotype-calling algorithms differed in their downstream effects on GWAS and genomic prediction, with some showing advantages over others. Through subsequent simulation studies, we observed that at low read depth, polyRAD was advantageous in its effect on GWAS power and limit of false positives. Additionally, we found that continuous genotypes increased the accuracy of genomic prediction, by reducing genotyping error, particularly at low sequencing depth. Our results indicate that by using the Bayesian algorithm implemented in polyRAD and continuous genotypes, we can accurately and cost-efficiently implement GWAS and genomic prediction in polyploid crops.


Assuntos
Estudo de Associação Genômica Ampla , Genômica , Estudo de Associação Genômica Ampla/métodos , Teorema de Bayes , Genótipo , Genômica/métodos , Poliploidia
2.
PLoS One ; 16(1): e0240390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33411785

RESUMO

Miscanthus is a close relative of Saccharum and a potentially valuable genetic resource for improving sugarcane. Differences in flowering time within and between Miscanthus and Saccharum hinders intra- and interspecific hybridizations. A series of greenhouse experiments were conducted over three years to determine how to synchronize flowering time of Saccharum and Miscanthus genotypes. We found that day length was an important factor influencing when Miscanthus and Saccharum flowered. Sugarcane could be induced to flower in a central Illinois greenhouse using supplemental lighting to reduce the rate at which days shortened during the autumn and winter to 1 min d-1, which allowed us to synchronize the flowering of some sugarcane genotypes with Miscanthus genotypes primarily from low latitudes. In a complementary growth chamber experiment, we evaluated 33 Miscanthus genotypes, including 28 M. sinensis, 2 M. floridulus, and 3 M. ×giganteus collected from 20.9° S to 44.9° N for response to three day lengths (10 h, 12.5 h, and 15 h). High latitude-adapted M. sinensis flowered mainly under 15 h days, but unexpectedly, short days resulted in short, stocky plants that did not flower; in some cases, flag leaves developed under short days but heading did not occur. In contrast, for M. sinensis and M. floridulus from low latitudes, shorter day lengths typically resulted in earlier flowering, and for some low latitude genotypes, 15 h days resulted in no flowering. However, the highest ratio of reproductive shoots to total number of culms was typically observed for 12.5 h or 15 h days. Latitude of origin was significantly associated with culm length, and the shorter the days, the stronger the relationship. Nearly all entries achieved maximal culm length under the 15 h treatment, but the nearer to the equator an accession originated, the less of a difference in culm length between the short-day treatments and the 15 h day treatment. Under short days, short culms for high-latitude accessions was achieved by different physiological mechanisms for M. sinensis genetic groups from the mainland in comparison to those from Japan; for mainland accessions, the mechanism was reduced internode length, whereas for Japanese accessions the phyllochron under short days was greater than under long days. Thus, for M. sinensis, short days typically hastened floral induction, consistent with the expectations for a facultative short-day plant. However, for high latitude accessions of M. sinensis, days less than 12.5 h also signaled that plants should prepare for winter by producing many short culms with limited elongation and development; moreover, this response was also epistatic to flowering. Thus, to flower M. sinensis that originates from high latitudes synchronously with sugarcane, the former needs day lengths >12.5 h (perhaps as high as 15 h), whereas that the latter needs day lengths <12.5 h.


Assuntos
Cruzamentos Genéticos , Flores/genética , Genótipo , Saccharum/genética
3.
Ann Bot ; 124(4): 731-748, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30247525

RESUMO

BACKGROUND AND AIMS: Miscanthus, a C4 perennial grass native to East Asia, is a promising biomass crop. Miscanthus sacchariflorus has a broad geographic range, is used to produce paper in China and is one of the parents (along with Miscanthus sinensis) of the important biomass species Miscanthus × giganteus. The largest study of M. sacchariflorus population genetics to date is reported here. METHODS: Collections included 764 individuals across East Asia. Samples were genotyped with 34 605 single nucleotide polymorphisms (SNPs) derived from restriction site-associated DNA sequencing (RAD-seq) and ten plastid microsatellites, and were subjected to ploidy analysis by flow cytometry. KEY RESULTS: Six major genetic groups within M. sacchariflorus were identified using SNP data: three diploid groups, comprising Yangtze (M. sacchariflorus ssp. lutarioriparius), N China and Korea/NE China/Russia; and three tetraploid groups, comprising N China/Korea/Russia, S Japan and N Japan. Miscanthus sacchariflorus ssp. lutarioriparius was derived from the N China group, with a substantial bottleneck. Japanese and mainland tetraploids originated from independent polyploidization events. Hybrids between diploid M. sacchariflorus and M. sinensis were identified in Korea, but without introgression into either parent species. In contrast, tetraploid M. sacchariflorus in southern Japan and Korea exhibited substantial hybridization and introgression with local diploid M. sinensis. CONCLUSIONS: Genetic data indicated that the land now under the Yellow Sea was a centre of diversity for M. sacchariflorus during the last glacial maximum, followed by a series of migrations as the climate became warmer and wetter. Overall, M. sacchariflorus has greater genetic diversity than M. sinensis, suggesting that breeding and selection within M. sacchariflorus will be important for the development of improved M. × giganteus. Ornamental M. sacchariflorus genotypes in Europe and North America represent a very narrow portion of the species' genetic diversity, and thus do not well represent the species as a whole.


Assuntos
Diploide , Tetraploidia , China , Europa (Continente) , Ásia Oriental , Humanos , Japão , América do Norte , Poaceae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...